Exercises – Vector spaces

- 1. Show that two vectors u, v are linear dependent if and only if there are two numbers a, $b \in \mathbb{R}$, such that au+bv=0
- 2. Show that the set of vectors in the hyperplane \mathbb{R}^n represented as $u=(u_1,...,u_n)$ form a vector space.
- 3. Given the vectors u=(0,0,-8,1), v=(1,-8,0,7) in \mathbb{R}^4 , find w such that 2u+v-3w=0.
- 4. Given the vectors $u_1=(1,3,2,1)$, $u_2=(2,-2,-5,4)$, $u_3=(2,-1,3,6)$ and v=(2,5,-4,0) $\in \mathbb{R}^4$. Write v as a linear combination of u_1 , u_2 , u_3 . If it is not possible, say so.
- 5. Show that the set of all ordered pairs of real numbers is a vector space over \mathbb{R} .
- 6. Consider the set V of all polynomials of degree 2 (fixed degree). Is V a vector space? Justify the answer.
- 7. Consider the set V' of all polynomials of degree \leq 2. Is V' a vector space? (compare with the previous exercise)
- 8. Given $S = \{ (1,-1), (2,1) \}$ a subset of \mathbb{R}^2 , i.e. $S \subseteq \mathbb{R}^2$. Show that S is a set of generators of the vector space \mathbb{R}^2
- 9. Consider $S=\{(1,1)\}$. Is S a generator of the vector space \mathbb{R}^2 ?
- 10. Show that $S = \{ (1,0,0), (0,1,0), (0,0,1) \}$ is a basis of the vector space \mathbb{R}^3
- 11. Given $v=(2,3,1) \in \mathbb{R}^3$, and $u_1=(2,0,1)$, $u_2=(0,1,1)$, $u_3=(0,0,2) \in \mathbb{R}^3$.
 - a. Show that $S=\{u_1,u_2,u_3\}$ is a basis of \mathbb{R}^3 ,
 - b. Find a representation of *v* in *S*
 - c. Find a representation of the canonical basis $e_1=(1,0,0)$, $e_2=(0,1,0)$, $e_3=(0,0,1)$ in S.